62 research outputs found

    Impact of Spatially Consistent Channels on Digital Beamforming for Millimeter-Wave Systems

    Get PDF
    The premise of massive multiple-input multiple-output (MIMO) is based around coherent transmission and detection. Majority of the vast literature on massive MIMO presents performance evaluations over simplified statistical propagation models. All such models are drop-based and do not ensure continuity of channel parameters. In this paper, we quantify the impact of spatially consistent (SC) models on beamforming for massive MIMO systems. We focus on the downlink of a 28GHz multiuser urban microcellular scenario. Using the recently standardized Third Generation Partnership Project 38.901 SC-I procedure, we evaluate the signal-to-interference-plus-noise ratio of a user equipment and the system ergodic sum spectral efficiency with zero-forcing, block diagonalization, and signal-to-leakage-plus-noise ratio beamforming. Our results disclose that at practical signal-to-noise ratio levels, SC channels yield a significant performance loss relative to the case without SC due to substantial spatial correlation across the channel parameters.Comment: Invited Paper in the Proceedings of EuCAP 202

    Impact of Spatially Consistent Channels on Digital Beamforming for Millimeter-Wave Systems: (Invited Paper)

    Get PDF
    The premise of massive multiple-input multiple-output (MIMO) is based around coherent transmission and detection. Majority of the vast literature on massive MIMO presents performance evaluations over simplified statistical propagation models. All such models are drop-based and do not ensure continuity of channel parameters. In this paper, we quantify the impact of spatially consistent (SC) models on beamforming for massive MIMO systems. We focus on the downlink of a 28GHz multiuser urban microcellular scenario. Using the recently standardized Third Generation Partnership Project 38.901 SC-I procedure, we evaluate the signal-to-interference-plus-noise ratio of a user equipment and the system ergodic sum spectral efficiency with zero-forcing, block diagonalization, and signal-to-leakage-plus-noise ratio beamforming. Our results disclose that at practical signal-to-noise ratio levels, SC channels yield a significant performance loss relative to the case without SC due to substantial spatial correlation across the channel parameters

    Does Massive MIMO Fail in Ricean Channels?

    Get PDF
    Massive multiple-input multiple-output (MIMO) is now making its way to the standardization exercise of future 5G networks. Yet, there are still fundamental questions pertaining to the robustness of massive MIMO against physically detrimental propagation conditions. On these grounds, we identify scenarios under which massive MIMO can potentially fail in Ricean channels, and characterize them physically, as well as, mathematically. Our analysis extends and generalizes a stream of recent papers on this topic and articulates emphatically that such harmful scenarios in Ricean fading conditions are unlikely and can be compensated using any standard scheduling scheme. This implies that massive MIMO is intrinsically effective at combating interuser interference and, if needed, can avail of the base-station scheduler for further robustness.Comment: IEEE Wireless Communications Letters, accepte

    Uplink Analysis of Large MU-MIMO Systems With Space-Constrained Arrays in Ricean Fading

    Full text link
    Closed-form approximations to the expected per-terminal signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spectral efficiency of a large multiuser multiple-input multiple-output system are presented. Our analysis assumes correlated Ricean fading with maximum ratio combining on the uplink, where the base station (BS) is equipped with a uniform linear array (ULA) with physical size restrictions. Unlike previous studies, our model caters for the presence of unequal correlation matrices and unequal Rice factors for each terminal. As the number of BS antennas grows without bound, with a finite number of terminals, we derive the limiting expected per-terminal SINR and ergodic sum spectral efficiency of the system. Our findings suggest that with restrictions on the size of the ULA, the expected SINR saturates with increasing operating signal-to-noise-ratio (SNR) and BS antennas. Whilst unequal correlation matrices result in higher performance, the presence of strong line-of-sight (LoS) has an opposite effect. Our analysis accommodates changes in system dimensions, SNR, LoS levels, spatial correlation levels and variations in fixed physical spacings of the BS array.Comment: 7 pages, 3 figures, accepted for publication in the proceedings of IEEE ICC, to be held in Paris, France, May 201

    Impact of Line-of-Sight and Unequal Spatial Correlation on Uplink MU-MIMO Systems

    Get PDF
    Closed-form approximations of the expected per-terminal signal-to-interference-plus-noise-ratio (SINR) and ergodic sum spectral efficiency of a multiuser multiple-input multiple-output system are presented. Our analysis assumes spatially correlated Ricean fading channels with maximum-ratio combining on the uplink. Unlike previous studies, our model accounts for the presence of unequal correlation matrices, unequal Rice factors, as well as unequal link gains to each terminal. The derived approximations lend themselves to useful insights, special cases and demonstrate the aggregate impact of line-of-sight (LoS) and unequal correlation matrices. Numerical results show that while unequal correlation matrices enhance the expected SINR and ergodic sum spectral efficiency, the presence of strong LoS has an opposite effect. Our approximations are general and remain insensitive to changes in the system dimensions, signal-to-noise-ratios, LoS levels and unequal correlation levels.Comment: 4 pages, 2 figures, accepted for publication in the IEEE Wireless Communications Letters, Vol. 6, 201

    A Light Signalling Approach to Node Grouping for Massive MIMO IoT Networks

    Full text link
    Massive MIMO is a promising technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes in groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency
    corecore